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Green’s function for photonic crystal slabs
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Green’s tensors for photonic crystal (PC) slabs are numerically solved by the coupled-dipole approximation
(CDA) technique. The obtained components of Green’s tensors satisfy discontinuous or continuous conditions
at interfaces of scatterers. This shows that the CDA technique is very applicable to studying the properties of
PC slabs. Green’s tensors exhibit obviously periodic oscillation with the increase of the number of scatterers;
furthermore, the effect of each scatterer on Green’s tensors displays a localization feature in the sample
containing one row of scatterers; on the contrary, this localized effect disappears in the sample consisting of

multiple rows of scatterers.
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I. INTRODUCTION

Recently, there has been great interest in photonic crystals
(PCs), which possess periodic dielectric structures with the
so-called photonic bandgaps (PBGs). PBGs can be used to
effectively control the light propagation [1-6] and atomic
spontaneous emission [7-10] in PCs. The three-dimensional
(3D) PCs are favorable for some practical applications. How-
ever, it is still difficult to fabricate available 3D PCs served
as photonic devices. An alternative system is the consider-
ation of the PC slabs with two-dimensional (2D) periodicity
and with the confinement in the third dimension by using the
index contrast. PC slabs are not only easier to fabricate using
existing techniques, but also they have the ability of realizing
various controls of light waves. A number of experimental
and theoretical studies on the PC slab structures have been
reported [11-15]. Tt is believed that the PC slabs become
preponderant for the miniaturization of individual optical de-
vices, making the densely integrated photonic circuits pos-
sible.

The electromagnetic properties of infinite PC structures
have been investigated extensively; however, real physical
structures always are finite. It is expected that electromag-
netic properties of finite PC structures may be significantly
different from the infinite ones. The Green’s tensor technique
is especially useful for studying the electromagnetic proper-
ties of the finite PC structures. This technique has been
shown to be greatly powerful in the calculations of light
scattering, for instance, the surface scattering [16] and
multilayer scattering [17,18]. On the other hand, the Green’s
tensor method has a great advantage in calculating the local
density of states (LDOS) of photons [19-21], in particular,
for the finite electromagnetic scattering systems. Recent
studies have shown that the LDOS plays a very important
role in determining quantum optical properties of atoms
(molecules) in inhomogeneous electromagnetic environ-
ments [5,22,23]. A great deal of practice has demonstrated
that the coupled-dipole approximation (CDA) can be applied
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to numerically solving the integral equation of the Green’s
tensors in scattering systems. Moreover, a powerful numeri-
cal method, in which the CDA is incorporated with the con-
jugated gradient algorithm and fast Fourier transform (CG-
FFT), has been developed to solve the Green’s tensors. This
technique provides huge reductions in memory sizes and
computing times [24-32]. The CDA with CGFFT has been
successfully employed to calculate the Green’s tensors of
both 2D and 3D finite-size photonic crystals [21,24]. How-
ever, no existing studies on the Green’s tensors of PC slabs
have been reported so far.

Due to important applications of PC slabs to the optical
devices, for instance, in the integrated photonic circuits, and
microcavity laser, in this paper, we study the properties of
the Green’s tensors for the PC slabs by using the CDA with
the CGFFT. The outline of this paper is as follows: Sec. II
introduces the CDA technique used for calculating Green’s
tensors for PC slabs. The calculation results are presented in
Sec. III, together with analysis. Finally, a brief summary is
reserved in Sec. IV.

II. THE COUPLED-DIPOLE APPROXIMATION IN AN
INTEGRAL EQUATION OF GREEN’s TENSORS

Let us consider a scattering system consisting of a back-
ground with dielectric function €®(r) and some scatterers
with the dielectric function €®(r)+Ae(r). When this system
is illuminated by an incident electric field E(r), the total
field E(r), and incident field E(r) satisfy the following vec-
torial wave equations, respectively;

V X V X E(r) - k[ €’(r) + Ae(r)JE(r) = 0, (1)
and
V X V X E%(r) - k3’ (r)E%(r) = 0, ()

where ky=w/c is the wave number in a vacuum. Equations
(1) and (2) can be transformed as the following integral
equations by the Green’s tensors [24]:

E(r):EO(r)+f dr'GB(r,x’) - IZAe(r)E(r'), (3)
v

or
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FIG. 1. Schematic of a two-dimensional square lattice PC slab
consisting of rectangular holes etched on a finite thin slab, sur-
rounded by air.

E(r) =E%r) +f dr'G(r,r') - kjAe(r)E'(r'),  (4)
%
where G(r,r’) and G®(r,r’) are the corresponding Green’s
tensors to Egs. (1) and (2), they satisfy the following equa-
tions:

VXV XG(r,r')-k[(r) + Ae(r)]G(r,r') =18 - 1)
(5)
and
VXV XGE(r,r") - kgf(r)GE(r,r') =18(r—r'). (6)

The Green’s tensor G(r,r’) of the total scattering system and
GB(r,r’) of the background material fulfill Dyson’s equation
as

G(r,r")=G%r,r') + f dr"GB(r,r") - KZAe(r)G(r",r").
v

)

Evidently, the three column vectors of the Green’s tensor
G(r,r’) represent, respectively, the three electric fields at r,
radiated from three orthogonal unit dipoles at r’.

Equation (7) can be well solved by using of the conven-
tional coupled-dipole approximation (CDA) technique, that
is, the scatterers are divided into N cells. We assume that the
size of each cell is so small that the variations of the Green’s
tensors can be negligible within each individual cell and the
cell location is assigned by its center of r;, and it has permit-
tivity €;=€(r;) and volume AV;. Equation (7) can then be
discretized as algebraic equations

N
G(ri,ro) = GB(rl', ro) + E GB(ri, I‘k) . kéAf(rk)G(rk, ro)AVk,
k=1

(8)
where r, denotes the position of the source point. We now
decompose G(r;,ry)=G5(r;,ry)+G*(r;,ry), and G(r;,r) is
the scattering Green’s tensor, which depends on the special
properties of scatterers. Then Eq. (8) can be reformed as

N

G'(r;,r) = X GE(r,ry) - kKA e(r)[GE(r,,ro)
k=1

+ Gs(rk,ro)]AVk. (9)

It is noted that G2(r,r’) becomes divergent at r=r’ or when
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FIG. 2. Variations of the Green’s tensors G,, and G, with x for
three different values of N,=3, 6, and 10 when fixed N,=1. The
solid curve corresponds to N,=10, the dashed curve to Nx=6, and
the dotted curve to N,=3. (a) for G, (r.r’) and (b) for G_(r,r’).

both r and r’ are located inside the same scatterer volume V.
This divergence can be overcome by an appropriate renor-
malization procedure, as described by Yaghjian in detail [32].

Equation (9) can be recast a set of a standard linear simul-
taneous equations as

N
E GB(ri’rk) : k(z)Af(rk)GB(rk’l‘o)
k=1

N

=> (6.1 - GB(r;,r)) - KGAe(r) AV, ]G (14,1
k=1

(10)

The Green’s tensors within the scatterers can be obtained by
solving the N linear simultaneous equations of Eq. (10). The
conjugated gradient algorithm is used to solve these linear
equations because it possesses the great advantage of saving
memory. To save the computing times, the fast Fourier trans-
form (FFT) technique has been employed [25-32]. In this
paper, we focus on the examination of the characteristics of
the Green’s tensors of a PC slab. The background Green’s
tensor G5(r,r’) is chosen as that of the stratified media
[17,18]. Tt is worth pointing out that the Green’s tensors in
the stratified media no longer hold the same symmetry as
those in an infinite homogenous background medium; there-
fore, it is impossible to apply the 3D FFT to expedite the
computations. However, the 2D FFT can significantly speed

026614-2



GREEN’s FUNCTION FOR PHOTONIC CRYSTAL SLABS

0.07
0.06
0.05
0.04
0.03
0.02 !

|Goa(r,r)| (a7)

0.01 |
0.00

0.16
0.14
0.12

0.10
0.08
0.06
0.04
0.02
0.00 -

|Goolr,r)| (@)

FIG. 3. Variations of the Green’s tensors G,, and G, with x for
two different positions of the source point. The dotted curve stands
for G,, and solid curve for G,,. (a) and (b) correspond to the source
point at (-1.04,0.25a,0.254) and (4.75a,-3.0a,0.25a),
respectively.

the computations due to the existence of the symmetry of the
tensor in the xy plane.

To apply the FFT in the x and y directions, we mathemati-
cally extend the scattered region in the xy plane into a rect-
angular block, double the lattice size in the x and y direc-
tions, and we consider the periodicity of the corresponding
physical quantity [31]. In order to clarify this problem in
brief, we reform Eq. (10) as

2N, 2N,

NT
Y= E 2 2 AuXpe, (11)
k=1 k=1

k=1

Where Y,-=E§(\[=1G3(ri,rk) 'kSAE(rk)GB(rk,ro), Aik=[5i,k1
—GB(ri,rk) 'k(Z)AE(rk)AVk], szGS(l‘k,rO), and N:NXN\'NZ is
the total number of the discretized lattice sites. It is clearly
seen that the elements of A;; are dependent only on the dis-
placment vector p;,=p,— Py Where p;=(x;,y;); thus, Eq. (11)
now can be written in a convolution form:

N, 2N, 2N,
Yi= 2 > 2 ALX (12)
k=1ks=1k=

As Eq. (12) possesses a convolution form, and if we perform
the Fourier transform in the x and y directions, keeping the z
dependency in the orginal domain, we then obtain the fol-
lowing summation in the z direction:
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FIG. 4. Variations of the Green’s tensors G,, and G, with x for
two different values of N,=6 and 10 when fixed Ny=1. The ar-
rangement of scatterers is aperiodic and the scattered regions are
denoted by the symbol “A”. The solid curve corresponds to N,
=10, and the dashed curve to N,=6. (a) for G, (r,r’) and (b) for
G, (r,r").

A

A’ nx,n‘.,k_’ (13)
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A
Ynx,ny,iz -
k=1

Z

where the caret symbol denotes the Fourier transform. The
2D-FFT technique has been discussed in detail in Ref. [26]
and testified to be an effective method for speeding the com-
putations.

The iteration process of solving Eq. (12) based upon the
conjugated-gradient algorithm and 2D FFT is briefly de-
scribed as follows: First, we give an initial guess X,’( for the
column vector X, and calculate its Fourier transform. Then

we calculate the ¥, , by Eq. (13) and Y, , , by the in-
verse 2D FFT. Afteerafd, we compare Y’ with'Y and gener-
ate the new X) by the conjugated-gradient algorithm. This
process is repeated until the obtained solution satisfies the
desirable convergency accuracy. This method approximately
requires total memories of ~4NN, and the CPU operations
of ~4L,NN, (here L; denotes the iteration times), much less
than N?. Therefore, this method can be applied to treat the

scattering problems of the large size structures.

II1. RESULTS AND ANALYSIS

The model structure considered is sketched in Fig. 1. The
PC slab consists of rectangular holes etched on a finite-
scaled thin slab surrounded by air. The dielectric constant of
the thin slab sets €,=3. We assume that the central distance
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FIG. 5. Variations of the Green’s tensors G,, or G,, and G,, or
G,, with x or y for N,=5 and Ny=1, 3, and 5. The dotted curve
corresponds to the Green’s tensors for Ny=35, the dashed curve to
N,=3, and the dotted curve to N,=1. (a) for G,(r.r’"), (b) for
Gy, (r,1"), (c) for G,y(r,r"), and (d) for G,,(r,r").

of the nearest hole-to-hole is a, both the length and width of
each hole are the same as 0.5a, and the thickness of the slab
is chosen to be 0.5a. The number of holes along the x or y
direction is selected by N, or N,. In the following calcula-
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tions, the wavelength of the incident light is A=1.0a and the
discretized step is dx=dy=N/26. This implies that a unit cell
is discretized into 8788 lattice sites.

We first study the Green’s tensors for the structure shown
in Fig. 1. To reveal the influence of the number of scatterers
on the Green’s tensors, we begin with the case of one row of
scatterers, i.€., N,=1. For brevity, we choose the coordinate
origin at the left lower corner of the first scatterer, i.e., r
=(x9,Y0,20)=(0,0,0). The gth scatterer occupies the region
of (q—l)a$x$<q—%)a, 0<y=<0.5a, and 0<z<0.5a. The
spacial variations of two components of Green’s tensors
G(r,r’) along the x axis are displayed in Fig. 2: (a) for
G, (r,r’) and (b) for G,,(r,r"). The solid curve corresponds
to the case of N,=10, the dashed curve to N,=6, and the
dotted curve to N,=3. The source point is placed at
r'=(-1.0a,-3.0a,0.25a) and the observation line is chosen
as r=(x,0.25a,0.4a). It is clearly seen that the change of the
number of scatterers can significantly modify the Green’s
tensors. As the number of scatterers increases, the Green’s
tensor exhibits striking oscillations. We also observe the in-
teresting behavior that when the number of scatterers is in-
creased to 6, no significant change in the Green’s tensor is
observed in the region of x <2.5a, while the Green’s tensors
exhibit remarkable changes in the regions occupied by new
additional scatterers. Similarly, so does the behavior in the
case of N,=10. This concludes that the influence of scatterers
on the Green’s tensors exhibits the localized feature. Further-
more, it is evident that the variations G, as a function of x
are continuous at every interface of the individual scatterer,
marked by the dotted vertical line. In contrast, G, is discon-
tinuous, and the values of Green’s tensors at the interfaces
toward the scatterer sides are larger than those at the inter-
face toward the background. From a physical viewpoint,
G, (r,r") and G_(r,r’), respectively, correspond to the x
and z components of the electric fields, radiated from a unit
electric dipole with the polarization parallel to the x axis.
Therefore, it is apparent that the tangential component of the
electric fields should be continuous across all interfaces,
while their normal component should jump at the interfaces.
These results are apparently associated with the continuity of
the electric displacement and discontinuity of the dielectric
constant. The dielectric constant of the scatterers is smaller
than that of the background medium; therefore, G, in the
scatterers should be larger than that in the background me-
dium at the vicinity of the interfaces. Finally, it is interesting
to note that in the case of N,=10, the Green’s tensors ap-
proximately exhibits periodic oscillatory behavior in the re-
gion far from the source point. It is reasonably concluded
that the oscillations exhibit perfect periodicity when N,
>10.

We now examine the characteristics of the Green’s
tensor for two different source points located at r’
=(-1.0a,0.25a,0.25a) and r'=(4.75a,-3.0a,0.25a), re-
spectively. The variations of G,, and G, as a function of x in
the case of N, =10 are demonstrated in Figs. 3(a) and 3(b) for
two different source points. The other parameters remain un-
changed, and are the same as those in Fig. 2. The dotted
curve corresponds to the variations of Green’s tensor G,
with x and solid curve to G,,. A similar characteristic, for
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instance, the discontinuity of the normal component of the
Green’s tensor at the interfaces, can be observed once again.
We have also performed the numerical calculations in the
cases of N,=3 and 6 and the localized phenomenon of the
Green’s tensor at the scatterers is also observed. It is worth
emphasizing an interesting result that G,,=0 in Fig. 3(a).
This arises from G§X=0 when y=y’ for the stratified struc-
tures, where y and y’ denote the positions of the observation
and source points along the y axis, respectively. As men-
tioned above, Gg’x can be regarded as an incident field, ex-
cited by a unit electric dipole with a polarization orientation
parallel to the x axis and propagating in the background of
the stratified structures. Therefore, G, , is generated from the
scattering of this incident field by the scatterers. Gfx=0
means that the incident field does not have a nonzero y com-
ponent. As the interfaces of each scatterer are planar, a new
component, i.e., the y component of the scattering field, can
never be generated. Consequently, G,,=0 is always held. In
Fig. 3(b), it is evident that the Green’s tensors exhibit a sym-
metric profile, which is attributed to the symmetry of the
model structure along the x axis with respect to the source
point.

The characteristics of the Green’s tensors in the aperiodic
arranging scatterers are shown in Fig. 4, in which the scat-
tered regions are marked by the symbol “A”. The other pa-
rameters are chosen as the same as those in Fig. 2. Compar-
ing this plot with Fig. 2, it is found that some characteristics
still are held, for instance, the oscillation behavior, the local-
ized feature of the Green’s tensors, and the continuous or
discontinuous properties of the Green’s tensors at the inter-
faces. However, the pattern of the oscillations and the oscil-
latory amplitude are significantly changed when the arrange-
ment of the scatterers are modified.

We now turn to investigate the Green’s tensors in a 2D PC
slab. We select N,=5, N,=1, 3, and 5. The scatterers are
labeled by the two indices g(g;,¢,) and the gth scatterer
occupies the region as

PHYSICAL REVIEW E 72, 026614 (2005)

(- Da<x<(q,-05)a,
(92— (Ny=3)2]la<y<[g,- (Ny2~-2)]a,
0=<z=<0.5a,

where N,=1, 3, and 5; 1<g;<N, and 1<g,<N,. The
source point is located at r’=(-1.0a,—1.0a,0.25a) and the
observation line is denoted by r=(x,2.25a,0.4a) in Figs.
5(a) and 5(b) and r=(2.25a,y,0.4a) in Figs. 5(c) and 5(d).
The solid curve corresponds to the Green’s tensors in the
case of Ny=5, the dashed curve to Ny=3, and the dotted
curve to Ny=1. The discontinuity of G,, or G,, at every
interface usually appears. However, the Green tensors are
greatly sensitive to the change of N,. This implies that the
influence of scatterers in the 2D PC slab on the Green’s
tensors no longer exhibits any localized feature. It is worth
pointing out that although only the components of G,,, G,,,
and G, are depicted above, it is believed that the obtained
results should be valid for other components of the Green’s
tensors.

IV. SUMMARY

The variations of Green’s tensors with the number of scat-
terers are examined by using the CDA technique with CG-
FFT. The numerical results show that the Green’s tensors
meet well the physical requirements at interfaces. This infers
that the CDA technique can be successfully applied to the
studies of the properties of the PC slabs. The Green’s tensors
exhibit striking oscillations as the number of scatterers in-
creases; furthermore, the effect of each scatterer on the
Green’s tensors proves to be local for the sample only with
one row of scatterers; on the contrary, this localized effect
disappears for the sample consisting of multiple rows of scat-
terers.
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